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A speculated ribozyme site in the herpes simplex
virus type 1 latency-associated transcript gene is not
essential for a wild-type reactivation phenotype
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During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT
(latency-associated transcript) is the only abundantly expressed viral gene.
LAT plays an important role in the HSV-1 latency-reactivation cycle, because
LAT deletion mutants have a significantly decreased reactivation phenotype.
Based solely on sequence analysis, it was speculated that LAT encodes a
ribozyme that plays an important role in how LAT enhances the virus’
reactivation phenotype. Because LAT ribozyme activity has never been
reported, we decided to test the converse hypothesis, namely, that this region
of LAT does not encode a ribozyme function important for LAT’s ability to
enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz)
in which the speculated ribozyme consensus sequence was altered such that
no ribozyme was encoded. We report here that LAT-Rz had a wild-type
reactivation phenotype in mice, confirming the hypothesis that the speculated
LAT ribozyme is not a dominant factor in stimulating the latency-reactivation

cycle in mice. Journal of NeuroVirology (2008) 14, 558-562.
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Following primary ocular herpes simplex virus type
1 (HSV-1) infection, the virus established life long
latency in neurons of the trigeminal ganglia (TG).
Sporadic viral reactivation in the TG can lead to
shedding of virus in tears, and less often to recurrent
corneal disease, a significant cause of corneal
blindness due to an infectious agent (Nesburn,
1983; Smith et al, 1980). During latency, latency-
associated transcript (LAT) is the only abundant
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viral transcript (Rock et al, 1987; Stevens et al,
1987). LAT-null mutants have a significantly re-
duced reactivation phenotype (Hill et al, 1990; Leib
et al, 1989, 1991; Perng et al, 1994; Sawtell and
Thompson, 1992; Steiner et al, 1989, Trousdale et al,
1991). Thus, LAT provides a function that directly
or indirectly enhances the HSV-1 reactivation
phenotype.

Restoring expression of LAT nucleotides (nts) 1 to
1499 to an otherwise LAT-null mutant can restore
the reactivation phenotype to wild-type levels
(Perng et al, 1996). Thus there is a LAT function
that resides completely within the first 1.5 kb of the
primary 8.3-kb LAT transcript that is sufficient for
supporting a wild-type reactivation phenotype. LAT
has antiapoptosis activity (Ahmed et al, 2002;
Carpenter et al, 2007; Kang et al, 2003; Perng et al,
2000) that appears to be a key factor in how LAT
enhances the reactivation phenotype because (1) the
region of LAT that can block apoptosis appears to
co-map with the region of LAT (the first 1.5 kb of



LAT) that enhances the reactivation phenotype
(Inman et al, 2001); and (2) mutants in which the
HSV-1 LAT gene is replaced by an alternative
antiapoptosis gene have a wild-type reactivation
phenotype (Jin et al, 2005, 2007; Mott et al, 2003;
Perng et al, 2002).

Theoretically, LAT’s function could be due to its
genomic DNA, a LAT RNA, and/or a LAT protein.
Apart from the promoter driving high levels of LAT
expression, a direct DNA function is highly unlikely
because plasmids or viral mutants containing just
the LAT promoter or just the LAT structural region
without the LAT promoter do not block apoptosis
and do not have a wild-type reactivation phenotype
(Hill et al, 1990; Inman et al, 2001; Jin et al, 2003;
Perng et al, 1999, 2000). Thus, LAT appears to
function either via one or more protein intermedi-
aries, via one or more RNA functions, or combina-
tions of proteins and RNAs. The search for a LAT
protein has been long and extensive. Although there
is a recent report of a LAT-encoded protein (Thomas
et al, 2002), this putative protein maps completely
outside of the functional first 1.5 kb of LAT,
suggesting that it is not critical for LAT’s ability to
enhance the reactivation phenotype. The first 1.5 kb
of LAT contains eight potential open reading frames
(ORFs), none of which are well conserved among
HSV-1 LAT genes from different HSV-1 strains,
suggesting that none of them are critical to LAT’s
function (Drolet et al, 1998). In contrast, changing
all eight initiating ATGs to TTGs in a plasmid
expressing just the first 1.5 kb of LAT completely
abrogated the LAT plasmid’s antiapoptosis activity
(Carpenter et al, 2008). Although this suggests that
one or more of these potential LAT proteins is
involved in blocking apoptosis, it is also possible
that introducing these point mutations altered the
LAT RNA structure or stability thus altering an
undetermined LAT RNA activity.

Recently a micro-RNA (miRNA) was reported to
be encoded upstream of the minimal LAT promoter
(Cui et al, 2006), and interest has been raised
regarding the possibility that LAT may encode one
or more functional miRNAs. Consistent with this,
we have recently found two small RNAs that are
encoded from within the first 1.5 kb of LAT (Peng
et al, 2008). It has not yet been determined whether
these small LAT RNAs are miRNAs or some other
type of small RNA. Nor has it been determined
whether they are involved in LAT’s antiapoptosis
activity or LAT’s ability to enhance the reactivation
phenotype.

One type of small RNA that functions without
encoding a functional protein is a ribozyme. The
consensus sequence “‘GAA(G/A)C” is required for
ribozyme activity (Hui and Lo, 1998). LAT contains
only one such sequence “GAAGC” at LAT nts 1245
to 1249 (Hui and Lo, 1998). The authors who
reported this hypothesized that LAT’s function was
dependent on this proposed ribozyme. Although
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this speculated ribozyme sequence is within the first
1.5 kb of LAT, and hence within the important
functional region of LAT, we are not aware of any
follow-up reports in over 10 years. We therefore
hypothesized that if a ribozyme is encoded by this
region of LAT, it probably does not play an impor-
tant role in LAT’s ability to enhance the reactivation
phenotype. It would be difficult to demonstrate that
LAT encodes a functional ribozyme without know-
ing what function to examine. Without a known
function, it would be even more difficult to disprove
the existence of a functional LAT ribozyme. We
therefore reasoned that the most direct and powerful
approach to test the hypothesis that the speculated
LAT ribozyme is not critical for the LAT function(s)
that enhance the reactivation phenotype would be to
make a viral mutant in which the speculated LAT
ribozyme sequence is disrupted in both copies of
LAT. We report here that reactivation of the resulting
ribozyme negative LAT mutant (LAT-Rz) in the
mouse explant TG reactivation model was indistin-
guishable from that of wild-type virus. Thus, the
speculated ribozyme is not essential for LAT’s
ability to enhance the HSV-1 reactivation phenotype
in mice.

The consensus ribozyme sequence “GAAGC” at
LAT nts 1245 to 1249 was changed to “TAAGC”
using site directed mutagenic primers and a two-
step polymerase chain reaction (PCR) reaction. Two
PCR fragments were generated that overlap by 35 bp
of identical sequence. This overlap contains the
above alteration to the ribozyme consensus se-
quence. The two fragments were mixed in equal
amounts and joined together by PCR. The resulting
445 bp long fragment contained a Kpnl restriction
site at the 5’ end and an Xcml restriction site at the
3’ end, with the mutated ribozyme consensus
sequence in between. The fragment was cloned
into the Kpnl/Xcml restriction sites of a cloned
Hpal/Sall fragment of McKrae DNA that overlaps
the putative ribozyme site by over 800 bp on both
ends. The mutated 445-bp region was then se-
quenced to confirm that the Hpal/Sall fragment
contained the mutated ribozyme consensus site.
This plasmid was designated LAT3.9Rz (Figure 1).

The LAT3.9Rz plasmid was then used to restore
the entire LAT region from LAT nts —161 to + 1667
in both copies of the LAT region of the LAT(—)
mutant dLAT2903 (Figure 1). This was achieved by
homologous recombination following cotransfection
of RS cells with the plasmid and purified genomic
dLAT2903 DNA. Viral plaques were screened with a
Styl-Styl probe (LAT nts 76 to 447) for reintroduc-
tion of the LAT region into the dLAT2903 virus, as
we previously described for construction of other
LAT mutants (Jin et al, 2005; Perng et al, 1994).
Following nine rounds of plaque purification, a viral
stock was grown and subjected to Southern blot
analysis to confirm that both copies of LAT had been
restored to dLAT2903 by the mutated LAT region
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Figure 1 Structure and construction of the LAT-Rz mutant. (A) Genomic structure of wt HSV-1. The HSV-1 genome contains a long
unique region (UL) bounded by inverted long repeats (TLR, terminal repeat long; IRL, internal repeat long) and a short unique region (US)
bounded by inverted short repeats (IRS, internal repeat short; TRS, terminal repeat short). The LAT locus is located in the long repeats
and is therefore present in two copies/genome. The crossing dashed lines indicate that the expanded view of the LAT regions in the
panels below represents both LAT copies in opposite orientations. (B) Expanded view of the LAT region and some of its transcripts. The
start of LAT transcription is at + 1. The primary LAT transcript is 8.3 kb. The solid rectangle shows the relative location of the stable 2-kb
LAT intron. The open rectangle indicates the LAT promoter region. The relative locations of the ICP0 and ICP34.5 mRNAs are shown.
“Rz?” indicates the relative location of the putative LAT ribozyme site. (C) LAT-null mutant dLAT2903. dLAT2903 contains a deletion
from an EcoRV restriction site at — 161 relative to the start of LAT transcription (thus deleting essential elements of the LAT promoter) to
a Hpal site at LAT nt 1667. It makes no detectable LAT RNA and has a significantly reduced reactivation phenotype. (D) Ribozyme-
negative restriction fragment. The putative LAT ribozyme site in LAT3.9Rz at LAT nts 1245 to 1249 was changed from “GAAGC” to
“TAAGC” using site directed mutagenic primers and a two-step PCR reaction and then cloning the resulting PCR product into the Kpnl/
Xcml restriction sites of a plasmid containing a Hpal/Sall fragment of wild-type HSV-1 McKrae DNA corresponding to LAT nts — 1800 to
+2102. The LAT3.9Rz sequence is identical to the McKrae sequence in this region except for the single bp change that eliminates the
putative ribozyme site. (E) LAT ribozyme-negative mutant LAT-Rz. The LAT3.9Rz plasmid (D) was cotransfected into RS cells with
dLAT2903 genomic DNA (C) to allow homologous recombination to restore the deleted region of dLAT2903 with LAT3.9Rz DNA, thus

“marker rescuing” dLAT2903 with DNA containing the disrupted putative ribozyme site.

(Figure 2). DNA was digested with Sall and the DNA
fragments separated on a 0.8% agarose gel, dena-
tured, and transferred to a nylon membrane for
Southern blot analysis. A Hpal-Hpal DNA fragment
(LAT nts —1800 to +1499) was radiolabeled with
a-**P-dCTP by nick translation and used as a probe.
Sall digestion produces a LAT DNA fragment from
LAT in the terminal long repeat that is larger than
the LAT DNA fragment from the internal long
repeat, thus allowing us to look at the status of
both copies of LAT. The enzyme cuts both copies of
LAT at LAT nt 2102 and then cuts in the unique long
region. The Sall site in the unique long region near
the terminal long repeat is 8768 nts away from LAT
nt 2102 in the terminal long repeat, whereas the Sall
site in the unique long region near the internal long
repeat is 6387 nts away from LAT nt 2102 in the
internal long repeat. Thus, as seen in Figure 2, the
wild-type LAT fragments are 8768 and 6387 bp,
whereas the dLAT2903 LAT fragments are each
1829 nts shorter (6939 and 4558 bp) due to the
EcoRV (—161) to Hpal (1667) deletion in both
copies of LAT. As shown in lane ‘“Rz,” homologous
recombination with the plasmid containing the
mutated ribozyme site restored both LAT regions to
their wild-type mobility, indicating that the viral
mutant, LAT-Rz, contains a mutation in the putative

LAT ribozyme sequence in both copies of LAT. This
mutation renders both LAT regions incapable of
encoding a functional ribozyme.

Replication of LAT-Rz in tissue culture was
similar to replication of wild-type virus (not shown).
To determine the effect of the putative LAT ribozyme
knockout on the HSV-1 reactivation phenotype,
Swiss-Webster mice were infected with 2 x10°
plaque-forming units (PFU)/eye of LAT-Rz, its im-
mediate parental virus the LAT deletion mutant
dLAT2903, or HSV-1 strain McKrae, the parental
wild-type virus from which dLAT2903 was con-
structed. Acute eye disease (not shown) and survival
(58% to 72%, P>.05) were similar with all three
viruses.

Mouse TG explant reactivation was performed as
previously described (Perng et al, 2001). Briefly, 30
days post infection mice were euthanized, TG were
removed, and individual TG, each cut into approxi-
mately 10 to 12 pieces, were plated in 6-well tissue
culture plates in standard tissue culture medium
(MEM) with 10% fetal calf serum (FCS). An aliquot of
medium was removed daily from each well and
plated onto monolayers of rabbit skin cells, which
were then monitored for the appearance of cyto-
pathic effects (CPEs) indicative of the presence of
reactivated virus. The time of first appearance of
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Figure 2 Southern blot of LAT-Rz genomic DNA. Genomic DNA
was prepared from dLAT2903 (the immediate parent virus of LAT-
Rz), wild-type McKrae (the immediate parent virus of dLAT2903),
and LAT-Rz. The DNAs were digested with Sall and Southern
analysis performed using a Hpal-Hpal (LAT nts — 1800 to +1499)
probe as described in the text. Sall digestion cuts at LAT nt 2102
and in the unique long region producing a larger LAT containing
fragment from the terminal long repeat compared to the internal
long repeat (see text). The wild-type LAT fragments are 8768 and
6387 bp, whereas the dLAT2903 LAT fragments are each 1829 nts
shorter (6939 and 4558 bp) due to the EcoRV to Hpal deletion in
both LAT genes. Lanes: dLAT, dLAT2903; wt, wild-type HSV-1
McKrae; Rz, LAT-Rz. There is a blank lane between wt and Rz.

reactivated virus in the TG explant cultures is shown
in Figure 3. Consistent with previous studies (Perng
et al, 1994, 2001), reactivation of dLAT2903 was
significantly reduced compared to wild-type McKrae
(P =.046 by survival curve analysis). Reactivation of
LAT-Rz was indistinguishable from wild-type virus
(P=.93) and was significantly greater than
dLAT2903 (P =.034). Thus, the putative LAT ribo-
zyme did not appear to be essential for LAT’s ability
to support the wild-type reactivation phenotype.
The speculated LAT ribozyme site mutated in this
report was noted almost 10 years ago based on
sequence analysis of the LAT region (Hui and Lo,
1998). At that time, it was proposed that LAT
encoded a functional ribozyme that plays a signifi-
cant role in how LAT affects the reactivation
phenotype. The proposed LAT ribozyme site is
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